Inverting hyperspectral images with Gaussian Regularized Sliced Inverse Regression
نویسندگان
چکیده
In the context of hyperspectral image analysis in planetology, we show how to estimate the physical parameters that generate the spectral infrared signal reflected by Mars. The training approach we develop is based on the estimation of the functional relationship between parameters and spectra, using a database of synthetic spectra generated by a physical model. The high dimension of spectra is reduced by using Gaussian regularized inverse regression to overcome the curse of dimensionality. Compared with a basic k-nearest neighbors approach or a Partial Least Square (PLS) regression, estimates are more accurate and are thus promising.
منابع مشابه
Gaussian Regularized Sliced Inverse Regression
Sliced Inverse Regression (SIR) is an effective method for dimension reduction in high-dimensional regression problems. The original method, however, requires the inversion of the predictors covariance matrix. In case of collinearity between these predictors or small sample sizes compared to the dimension, the inversion is not possible and a regularization technique has to be used. Our approach...
متن کاملX - 2 Bernard - Michel Et Al . : Retrieval of Mars Surface Physical Properties
In this paper, a statistical method is proposed to evaluate the 4 physical properties of surface materials on Mars from hyperspectral images 5 collected by the OMEGA instrument aboard the Mars express spacecraft. 6 The approach is based on the estimation of the functional relationship F be-7 tween some observed spectra and some physical parameters. To this end, a 8 database of synthetic spectra...
متن کاملSupport vectors machines regression for estimation of mars surface physical properties
In this paper, the estimation of physical properties from hyperspectral data with support vectors machines is addressed. Several kernel functions are used, from classical to advanced ones. The results are compared with Gaussian Regularized Sliced Inversion Regression and Partial Least Squares, both in terms of accuracy and complexity. Experiments on simulated data show that SVM produce highly a...
متن کاملCluster-based regularized sliced inverse regression for forecasting macroeconomic variables
This article concerns the dimension reduction in regression for large dataset. We introduce a new method based on the sliced inverse regression approach, called cluster-based regularized sliced inverse regression. Our method not only keeps the merit of considering both response and predictors information, but also enhances the capability of handling highly correlated variables. It is justified ...
متن کاملConsistency of regularized sliced inverse regression for kernel models
We develop an extension of the sliced inverse regression (SIR) framework for dimension reduction using kernel models and Tikhonov regularization. The result is a numerically stable nonlinear dimension reduction method. We prove consistency of the method under weak conditions even when the reproducing kernel Hilbert space induced by the kernel is infinite dimensional. We illustrate the utility o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008